
Deterministic Simulation of Random Processes 

By Joel N. Franklin 

1. Introduction. For many problems in engineering, economics, mathematics, 
and the sciences we are required to simulate random processes. The simulation is 
usually effected by a computer program which generates a non-random, deter- 
ministic sequence of numbers xl, x2, I * which is supposed to resemble a sequence 
of independent, random samples from the uniform probability distribution on the 
interval 0 ? x < 1. The purpose of this paper is to define some general properties 
of random sequences and to investigate certain deterministic sequences which have 
some or all of these properties. We shall ignore the limitation that a digital com- 
puter with a finite word-length and a finite memory, operating under a single stored 
program, can produce only sequences of limited precision which are ultimately 
periodic. This limitation is a kind of round-off error. We shall take as a model of a 
deterministic mechanism any of the stored-program digital computers now com- 
monly used for scientific computation modified in a single respect: let the word- 
length be infinite; let rational and irrational numbers x be recorded and computed 
with perfect precision. 

The fundamental problem approached in this paper is to construct an infinite, 
deterministic sequence xi which has every property shared by all infinite, random 
sequences of independent samples from the uniform distribution. 

Equidistribution is a first requirement of randomness. The sequence x" is equi- 
distributed in 0 < x < 1 if, for 0 < a < b < 1, 

(1.1) lim- E 1 = b-a. 
N-co N a < x<b 

1::< n < N 

H. Weyl [1] showed that the fractional parts Xn = f{noe are equidistributed for 
any irrational a. A summary of results on equidistribution is given by J. F. Koksma 
[4]. A sequence in r dimensions zn = (z](n) z2(n) . .. X zn) is equidistributed in 
the unit cube 

Cr :0 _ Z < 1, O< Z2 < 1, , o < Zr < 1 

if,for 0 ai <b? 1 (i= 1, r), 

(1.2) lim - E 1-l (bi-ai). 
N-coo Nai 2i (n)<b, (i=l,<T i=1 

1_ n _N 

It was shown by Weyl [1] and by van der Corput [2] that the sequence z (n) is equi- 
distributed if and only if 

1 N 

(1.3) lim - E exp 2ri (k z) + k2Z2jn + *. + kr = 0 
N-o N n=1 

for every set of integers k1, * , kr not all zero. 
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We require a definition of "probability" for deterministic sequences xn . Let Sn 
be a sequence of statements about the numbers xn . We define 

(1.4) Pr (Sn) = lim- 
1 1 

N--oo N sn true 
1 < n <N 

when this limit exists. For example, we define 

(1.5) Pr (xn > xn?+1) = limr Z 1 
N xn>xn+1 

1<n<N 

if the limit exists. As another example, definition (1.1) states that a sequence xs is 
equidistributed in C1 if Pr(a-Xn < b) = b-a for O< a < b ? 1. 

There are k! possible orderings of k distinct numbers z1 , Z2 , ** . Corre- 
spondingly, there are k! classes Oj (j- 1, *, k!) of vectors (z1 , *, Zk). 

For example, if k = 2 we say (z1 , Z2) O1 if z1 > Z2 , but (z1, Z2) 02 if Z2 > Z1 

For a given sequence xs in C1 define the k-dimensional vectors 

(1.6) z = (xn, x?n+, * xn+k-1) (n = 1, 2, ... 

We shall say that the sequence xs is equipartitioned by k's if 

(1.7) Pr (Z(n) E Oj) = 
I 

(j = 1, ., k!) 

The sequence xn will be called equidistributed by k's if the k-dimensional sequence 
Z(n) is equidistributed in the unit cube Ck . The sequence xn is completely equidistrib- 
uted if it is equidistributed by k's for every k. 

More generally, the sequence of r-dimensional vectors 

(1.8) y(n) = (yj 
(n) 

... , Yr (n)) (n = 1, 2, .) 

is defined to be equidistributed by k's if the sequence of k r dimensional vectors 

w(n) = (Y(n) 
(n+1)(n)(n+k-1) 

(n, , Yr ) 

is equidistributed in Ckr. The sequence y (n) is completely equidistributed if it is 
equidistributed by k's for every k. 

For one-dimensional equidistributed sequences xn we define the autocorrelation 
function R (r) and the spectral density b (w) by 

R(1.) = 01 - 2/ (* 0 ,=) 
N-9eoo N n=1i 2 - 

?4(w) = R(O)w + 2 Z R(r) cos 2irrw 
r=l 

if these limits exist. D. L. Jagerman [5] has proved that, if the limit 
1 N 

(1.10) F r, k, v) = lim - E sin 27rkxj sin vxj+? 
N-->oo N j= 

exists, then the equidistributed sequence xn has the autocorrelation function 

(1.11) R(r) = k1 v1 :irkv 
k=l v=1 r 2kv 
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The numbers x, form a white sequence if R (r) = 0 for all r # 0. Using the theorem 
(1.11) Jagerman proved that x, ={ n2a} is white. 

Finally, for the purpose of generating multi-dimensional sequences from one- 
dimensional sequences, we define the r-dimensional derived sequence y (n) related to 
the one-dimensional sequence xn by the formula 

(n) 
y = (Xnr Xnr+l X Xnr+r-1) (n = 1,2, * ). 

All of the properties equipartition, equidistribution, and whiteness are of 
interest because they are properties of the truly random sequences which we are 
trying to simulate. In this paper these properties are studied with regard to several 
classes of equidistributed sequences. We consider briefly the Weyl sequence xn = 

Ina}, a irrational. We then consider Multiply sequences, which are formed from 
recursion formulas 

(1.12) Xn+1 = {Nxn + f} (n = 0 1, * I.. 

where N = integer > 1. These sequences have a long history in the literature and 
practice of computation; some early references are given by 0. Taussky and J. 
Todd [6]. These sequences were shown to be equidistributed for almost all xo in 
[7]. Next we discuss "polynomial" sequences. 

(1.13) n = {n'a + cinP"-+ c2n -2 + * *H+ Cpj, a irrational. 

H. Weyl [1] showed that these sequences are equidistributed. Finally we discuss 
the sequences Xn = { on\J which were shown by J. F. Koksma [3] to be equidistrib- 
uted for almost all 0 > 1. 

Sumnmnary of results: The Weyl sequence Xn = Ina), a irrational, is not equi- 
partitioned by twos. 

A Multiply sequence may fail to be equidistributed even if xo is transcendental. 
Every equidistributed Multiply sequence is equipartitioned by twos. 
Every sequence equidistributed by V's is equipartioned by k's. 
Let x1 , x2, * be any sequence in C1 generated by a recurrence formula 

Xn+1= F(xn). This sequence cannot be equidistributed by k's for any k > 1 if 
F (x) has any point of continuity in 0 < x < 1. In particular, no Multiply sequence 
is equidistributed by k's for any k > 1. 

Let x1, x, ... be an equidistributed sequence satisfying Xn+1 = {NNxnj, N = 

integer > 1. Then 

Pr(x, > Xn+1 > Xn+2) = 6(1 + N-'). 

Thus the sequence is not equipartitioned by k's for any k _ 3. 
Let 0 and xo be fixed. For each N = 2, 3, ... form the Multiply sequence 

Xn = Xn (N) from the recurrence formula (1.12). For almost all xo these sequences 
are equidistributed, and they are asymptotically completely equidistributed in 
this sense: For every positive integer k 

k-1 

lim Pr(a, < xrl+r(N) < br for r =0. , k- 1) = I(br-aa) 
N-oo r=O 
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For almost all xo the Multiply sequence xn (N) is asymptotically completely 
equipartitioned in this sense: For every positive integer k 

lim Pr (z(nl (N) C Oj) = 
I 

(i = 1, , k!) 
N-boo k! 

where Oj is any of the k! partitions of Ck , and where z~ (Xn ,Xn, XnX+k-) . 

Let f (z, * * *, zk) be any Riemann-integrable function in Ck for which all the 
one-dimensional Riemann integrals over line segments in Ck exist. Then for almost 
all starting values xo the Multiply sequences Xn (N) have the limiting property 

lM r1 r 
lim lim - f f(xn(N) * Xn+k-l(N)) = aZ a f(z* Zk) dz* dzk 
N-*oo M-->oo M n=1 O O 

For almost all xo the Multiply sequence defined by (1.12) has the autocorrelation 
function 

-(T) = N-'(-2} + flo')) (,r0 = n 0, ) 

where 3 = (N - 1)O/(N - 1). Thus 

2-N 
` < R (,) < I f-Tr (r= 0, 1, .. 

so that A (r) -* 0 as N -* oc uniformly in r for r # 0; in this sense the Multiply 
sequence xn (N) is asymptotically white. 

Let q (x) be a polynomial with real coefficients. Suppose that for some xo the 
sequence xi , x2, generated by 

Xn+1 = {q(Xn)} (n = 0 1, ... 

is equidistributed in 0 ? x < 1. Then either q (x) = x + a, a irrational, or q (x) = 

Nx + 0, i= N = integer > 1. 
The "polynomial" sequence (1.13) of degree p is equidistributed by k's if and 

only if k _ p. 
Every polynomial sequence of degree p ? 2 is white. 
The sequence xA = {n2a}, a irrational, 0 < a < 1, is equipartitioned by threes 

if and only if a is one of the four numbers (3 i N/3)/12, (9 i V3)/12. 
The sequence xAn = { On} is completely equidistributed for almost all 0 > 1. 
If Xn = { O'} is equidistributed by r's, then 0 cannot be an algebraic number of 

degree < r. In particular, if {0 X} is completely equidistributed, then 0 is trans- 
cendental. 

Every completely equidistributed sequence is white. 
There is an equidistributed white sequence x,, for which Pr (xn > xn+1) is not 

equal to 1/2. 
There is a sequence x1 , x2, * equidistributed by twos for which the two- 

dimensional derived sequence (X2 , X3), (X4 , X5), is not equidistributed. 
For any Multiply sequence xn the r-dimensional derived sequence y = 

(Xnr , Xnr+* , Xnr+r-1) is not equidistributed in Cr for any r > 1. 
The r-dimensional derived sequence yf(n) formed from the polynomial sequence 

Xn = {an' + * + cp} (a irrational) is equidistributed by k's if and only if 
kr < p. 
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For almost all 0 > 1, for every r = 1, 2, * *, the r-dimensional derived sequence 
y(`) formed from xn = { 0` is completely equidistributed. 

2. Weyl Sequences. Weyl showed [1] that x1n = {na} is equidistributed if a 
is irrational. Let us compute Pr (x. > x.+1). We have x > {x + a} when 1-a < 
x < 1. Therefore, by equidistribution, 

(2.1) Pr (xn > xn+,) = Pr (1 - a _< x < 1) = a 2 

As D. L. Jagerman has shown [5], Weyl sequences are not white. He has shown 
that, according to definition (1.9), 

R (,r) = - [ Q {u)lu (r = 0 1,2, 2**). 

Since the integral f ( -{u}) du is a periodic function of x, we may also write 

R (,r) l f T} ( ) (r = O. 1 2,...) 

1 1 1 

{ar} + {ar} 2. 

Since the values { ar} are equidistributed in (0, 1), the sequence R (r) takes values 
dense in the interval (- I, A) for arbitrarily large integers r. Therefore, the 
spectral density 4 (X) defined by (1.9) does not exist. 

3. Multiply Sequences. Although Multiply sequences, defined by (1.2) with 
N = integer > 1, are equidistributed for almost all xo (c.f. [7]), it is not sufficient 
for equidistribution that xo be irrational. 

THEOREM 1. A Multiply sequence may fail to be equidistributed even if xo is 
transcendental. 

Proof. Let 0 = 0, and let xo be the Liouville number 
00 

xo= E N-PI . 
P=1 

This number is easily shown [9] to be transcendental. Then all the numbers xI 
have N-ary expansions beginning with .1 or with .0; in every case 

In = {NnXo} < N-1 + N-2 + N-3 < 1. 

Therefore, these numbers fail to be equidistributed. 
Incidentally, it was Borel who first proved, by probabilistic arguments, that 

for almost all positive numbers xo < 1 the digits 0, * * , N - 1 appear with equal 
likelihood 1/N. The proof of equidistribution for 0 - 0 which appears in [7] follows 
from the Riesz ergodic theorem. 

THEOREM 2. Every equidistributed Multiply sequence is equipartitioned by 2's. 
Proof. We must show that the xI are distinct and that Pr (xn+1 > xA) = 1/2 

in the sense of the definition of "probability" given by (1.4). 
The numbers x., are distinct because otherwise the sequence would ultimately 
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be periodic and therefore not equidistributed. In other words, if x, = xq, then 
Xp+i xq+i for all i > 0. 

Let G be the set of numbers x in (0, 1) with the property that {Nx + 0} > x. 
Since the xa are equidistributed, with x.+= {Nxn + 0}, the theorem will be 
proved if it is shown that G consists of a finite number of intervals whose lengths 
total 1/2. Without loss of generality assume 0 < 0 < 1. Then for k = 0, 1, * , N 

(3.1) {Nx+o} =Nx+0-k for xinEk 

where Eo, * , EN are the subintervals 

1-0 
Eo: O < x < N 

(3.2) Ek: k <x<k+ 1 (k=1, ...N-1) 
N = N 

EN: N < X <1 
N= 

Let Gk be G n Ek, i.e., that portion of G which lies in Ek. In Gk we have Nx + 
0-k > x, or x > (k - 0)/(N- 1). Since (N - 0)/(N- 1) > 1, theset GN 

is empty; for k < N the sets Gk are the intervals 

Go: 0 < x < N 
-N 

(3.3) 
Gk : 1 N (k N 

since 

N < Nl1= N (k =1,* XN-1). 

Therefore, G is the union of the intervals Go, * , GN-1 whose lengths total 

(3.4) NGI = E Gk=1(k?1- k- Gk=OI I=N += N Ni! 

for which an elementary computation gives the value G = 1/2. This completes 
the proof. 

This is a convenient context in which to prove the general result: 
THEOREM 3. Every sequence equidistributed by k's is equipartitioned by k's. 
Proof. Given a sequence xo in the interval Ci such that the vectors 

Z(n)= (Xn , Xn+1 , ... * Xn~k-) are equidistributed in Ck, we must show that these 
vectors lie in the set Oj with probability 1/k! where Oj is any one of the k! subsets 
of Ck: 

(3 .5) ?1 Z1 < ... < Zk, *, Ok! : Zk < ... < Z1 

This is an immediate consequence of the well-known fact (see, for example, Koksma 
[4]) that 

N 1 

(3.6) 1i 1 E= * (z) dz . dZk 
MUN-->o -1 n 
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for all Riemann-integrable functions f(z) = f (z1 , * , zk) if the sequence zIn1 is 

equidistributed in Ck . In our case we simply define f(z) = 1 if z is in Oj , f(z) = 0 
otherwise. Then formula (3.6) reads: 

(3.7) Pr (z nI in Oj) = volume of Oj. 

By symmetry Oj has volume 1/k!. 
Returning to Multiply sequences, we observe from the following general result 

that no Multiply sequence is equidistributed by k's for any k > 1. 
THEOREM 4. Let X1 , X2 , * * * be any sequence in Ci generated by a recurrence 

formula xn+1 = F (x.). This sequence cannot be equidistributed by k's for any k > 1 
if F (x) has any point of continuity in 0 < x < 1. 

Proof. Let F (x) be continuous at x = a, with F (a) = b. Then there is a number 
a > 0 such that I F(x) -b b < 1/4 if Ix - a < t. Let I be the intersection of 
I x-a a < a with 0 < x < 1; let J be any interval in C1 whose distance from b 
exceeds 1/4. Then no points (x. , x.+1) lie in the rectangle I X J. Therefore, the 
sequence xan is not equidistributed by twos, hence not equidistributed by k's for 
any k> 1. 

In the case of Multiply sequences, F (x) = {Nx + O}, which is continuous at 
all but N or N - 1 points in (0, 1). 

The question remains: Are Multiply sequences at least equipartitioiied by k's 
for all k? We answer this question in the case 0 = 0. 

THEOREM 5. Let X1 , X2 , * * * be an equidistributed sequence satisfying Xn+1 = 

Nxn}, where N = integer > 1. Then 

(3.8) Pr(xn > Xn+1 > Xn+2) = 6(1 + N-1) 

Thus, the sequence Xn is not equipartitioned by k's for any k ? 3. 
Proof. For 0 < x < 1 define 

(3.9) y = {Nx}, z = {Ny} = {N2xI. 

Let G be the set of x such that x > y > z. Since Xn is equidistributed, it will suffice 
to show that G is a collection of a finite number of intervals whose lengths total 
(1 + N-') /6. For this purpose we use the Borel interpretation of y and z. We have 

(3.10) x = A 
+ N Y = B 

+ N N N' NV N 

where A and B are integers between 0 and N - 1, and where x, y, and z are > 0 
and <1. We proceed to enumerate the cases in which x > y > z. If A = 0, then 
x = y/N < y, so that the relation x > y > z is impossible; in the same way we 
conclude that B > 0. If A = 1, , N-1 we have x > y when 

(3.11) K+ N > Y, or Y <N 

Similarly, y > z when z < Bj (N - 1). But x > y implies A ? B, since 

(3.12) A+Y< A+1 < if B>A+1. N N N 

Therefore x > y > z implies 

(3.13) N-1 > A > B > 1, 0 < z < B/(N-1). 
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Conversely, these inequalities imply 

(3.14) ~~~B z A 1 A 
_ 

A 
N N N N N-1 N- 1 

Therefore, by (3.11), the inequalities (3.13) imply x > y. Since the second half of 
(3.13) implies y > z, the inequalities (3.13) are sufficient as well as necessary for 
x > y > z. But each x in C1 has a unique N-ary representation 

(3.15) x = + B + . (3.15) ~~ ~~~~~N N2 N 2 

Therefore, by (3.13) we see that the set G = (xlx > y > z) is a collection of a 
finite number of intervals whose lengths total 

N-1 A 1 B 

IGI=A=1 N2 N-i 
(3.16) 1 N-1 

N2( Z-A (A+1)=-(1+N-1). N N-1) A=1 26 

This completes the proof. 
The preceding computation shows that, although Pr (xn > x,+1 > x,+2) 1/6, 

this number is approached as N - - oo. In this sense, Multiply sequences with 0 = 0 
are asymptotically equipartitioned by 3's. We shall show much more: Multiply 
sequences with any 0 are asymptotically completely equidistributed as N - oo . 

THEOREM 6. Let 0 and xo be fixed. For each N = 2, 3, form the sequence 
Xn = Xn (AT) from the formula 

(3.17) Xn+1 = {Nxn + 0} (n = O,1,2, 12 .). 

For almost all xo these sequences are all equidistributed, and 

k-1 

(3.18) lim Pr(ar < Xn+r(N) < br for r = 0, 1, ,k- 1) = TI (br- ar) 
N-boo r=O 

if 0 < ar < br _ 1 (r = 0. , k - 1). This result holds for all positive integers k. 
Proof. This result follows from a calculation with Fourier series. For all real x 

define the periodic function 4 (x; a, b) = 4) (x + 1; a, b) such that 

(3.19) P= 1(a <x<b); 4 =0 (O<x<a or b x<1). 

If 0 ? z < b < 1 this function is discontinuous unless a = 0 and b = 1. For all 
sufficiently small e > 0 we define continuous, periodic, piecewise linear functions 
g)+(x; a, b) and 0- (x; a, b) as follows: If a =O and b = 1, define A =7=4) 01. 
If a > 0 or b < 1 define 

c4) = E-(x- (a-e)) (a-e _ x _ a) 

(a x_ b) 

(3.20) e(b + ex) (b x b +e) 

0+ =b n Ah < 
b < a - E 1) 
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Similarly define 

c = >E (x-a) (a _ x _ a + e) 

47 = 1 (a + e x< < b- ) 

(3.21) ( E =5'(b-x) (b-e < x < b) 

(7= 0 (b < x< aa+ 1) 

47(x; a, b) = 4(x + 1; a, b) for all x. 

Both functions 0+ and 0- have uniformly and absolutely convergent Fourier series 

(3.22) d.(x; a, b) = ZcP'(a, b) exp 2rivx for all x. 

Furthermore, for all x 

(3.23) /(x; a, b) <x; a, b) + (x; a, b) 

and 

(3.24) f +(x; a, b) dx = co'(a, b) = b - a ? E' 

where e = e unless a = 0 and b = 1, in which case e' = 0. 
For each integer N > 1 the sequence xn is equidistributed for almost all xo. 

Therefore, since the set of N's is denumerable, all sequences Xn(N) are equidistributed 
for almost all xO ; in the rest of the proof we assume xo to have any value such that 
all the sequences Xn (N) are equidistributed. 

A trivial inductive proof shows that for each n = 0,1, 

(3.25) Xn+r _ NrXn + Or(mod 1) (r = 0,1, *.*) 

where Or = (N - 1) O/(N - 1). Therefore, ar < Xnr < br for r = 0. 
k - 1 if and only if 

k-1 

(3.26) TI 0 (NrXn + Or; ar br) = 1. 
r=O 

By the equidistribution of xn 

Pr(ar Xn+r< br for r =0 1, ., k- 1) 
M k-1 

= lim M-1 ' II 0 (NrXn + Or; ar ) br) 
M- >0 n=l r=o 

(3.27) 1 k-1 

=1 H rI (Nrx + Or;ar br) dx. Or=O 
Denoting this probability by P, we find from the inequalities (3.23) 

1k k1 1 k-1 

(3.28) (Nrx + Or; ar br) dx P < +(Nrx + Or; ar br) dx. 
Or=oO r=O 

Using the Fourier series (3.22) for &+, we find 
1 k-1 

(3.29) P _ Cv+ (ar br) exp 27ri~r(N rX + Or) dx. 
r=o Pr 
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Term-by-term integration gives 

(3.30) P < ** * > c+ (ao , bo) . Ckl(ak , bk-i)Ip N) 
V0 Vk-1 

where 

(3.31) Iv(N) = w f exp (2-ri(vo + viN + * + vk-l Nk-l)x) dx 

where cw = exp 2riEvrOr. Unless all vr = 0 the integer vo + vlN + * + vkiNk- 

is non-zero for all sufficiently large N, and lI (N) = 0. Thus I, (N) - 0 as N -0 O 

for each non-zero lattice point v = (vO, ** *, vk-1). Since all the Fourier series for 
the functions 0+ (N x + Or; ar, br) converge uniformly with respect to N and x, 
we may take the limit of the sum in (3.30) as N -? co term-by-term to obtain 

lim sup P _ co+ (ao bo) ... co (aki , bk-1). 
N -oo 

From the identity (3.24) we conclude 
k-1 

lim sup P < I (br-ar + Er). 
N- oo r=O 

Working with 4- instead of 0+, we find similarly 
k-1 

liminf P ? 1I (br- ar- Er). 
N-oo r=O 

Since Er < e is arbitrarily small, we obtain the required result P TI (br- ar) 
as N -* oo. 

From this result we can show that for almost all starting values xo the Multiply 
sequences x (N) are asymptotically completely equipartitioned as N - 00 . 

THEOREM 7. For almost all xo the Multiply sequences xn (N) defined by (3.17) 
have the property 

(3.32) lim Pr(z(n) (N) in Oj) = 1/k! 
N-->o 

where 0j is any of the k! partitions (3.5) of Ck , and where z(n) (N) = (Xn (N), * * 
Xn+k-i (N)). 

Proof. Let f (zi, * , Zk) = 1 if z lies in 0 j, f (z) = 0 otherwise. By the equi- 
distribution of each sequence Xn (N), we have the existence of the limit 

1~~~~~~~~- 
ff(x, tNx + 01i, ..., {Nklx + Ok-l) dx 

(3.33) = lim- E f(xn, {Nxn + O, 0 , {Nk1xn + Ok-lI)dx 

M 

=lim E f(z(n (N)) = Pr (z(n (N) in Oj) 
M->00 n=l 

where the numbers Or are defined in (3.25). Let e > 0 be given. Since f(z) is Rie- 
mann-integrable in Ck, we can partition Ck into k-dimensional boxes B, with 
volumes AV, such that 

(3.34) E z11,AVI,-fE < f... f (z) dz1 ... dZk _ n AlV, + E 
V CkP 
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where mn _ f(z) _ M, for z in B, . Let P, (N; M) be 1/M times the number of 
points z(l) (N), z(M) (N) which lie in B, . Then 

< M 
(3.35) m, P, (N; M) - M E (Z(n)z(N)) ? Z M, P,(N; M). 

By the last theorem we know that P, (N; M) tends to a limit P, (N) as Al -1 

(the form of this limit is given by the integral in (3.27) ) and that P, (N) tends to 
the limit AWV, as N ---> oo. Therefore, by (3.35) 

(3.36) Z, rvP, (N) ? Pr(z(n) (N) in Oj) ? E MAP (N) 
P V 

and 

lim sup Pr (z(n) (N) in Oj) ? E MvAVV 

(3.37) lim inf Pr (z(n) (N) in Oj) ? EI mvAV . 
Nboo v 

Using (3.34) and letting E -> 0 we obtain the existence of the limit 

lim Pr (z(n) (AT) in Oj Z)= dz 
(3.38) N--o ICk 

= volume of O. = 1/k! 

This completes the proof. 
We have, in fact, proved the more general result: 
THEOREM 8. Let f (xi, *** , Xk) be any Riemann-integrable function in Ck for 

which all the one-dimensional Riemann integrals (3.33) over line segments in Ck exist. 
Then for almost all starting values xo the Multiply sequences xn (N) defined by (3.17) 
have the limiting property 

M 
lim lim - E f (x(N), *X+k_(N).) 

(3.39) N-o M--oo M n=1 
1 1 

f . j f(z, *f *, Zk) dz1 . dZk 

Next we compute the autocorrelation function (1.9) of a Multiply sequence. 
THEOREM 9. For almost all xo the sequence defined by xn+l = Nx + 0, N 

integer > 1, has autocorrelation function 

(3.40) R ~r) AN (A- {} ? M/3}2) (2 = 0,1 ) 

where /3 = (N - 1) 0/ (N - 1). Thus 

-EN' R (T) < EN (r0,1,* ) 

so that R (T) -> 0 as N-* oo uniformnly in r for r # 0. 
Proof. We use Jagerman's Theorem (1.9), (1.10). We have 

M 
(3.41) F(T, k, v) = lim - E (cos 27rz7 - cos 2irzj+) 

M-->0o 2M j- 
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where z* kxj I Xj+T . Letting "-" mean "congruent modulo 1", we find from 
(3.25) 

zj -k (NJxo + N ) v(Ni+xo + N o) 
(3.42) N 

-Njxo' + N 16 + vP 

where 

(3.43) xO' = (k 4 PN')xo, 
a = (k 4 TN) 0) -= N 1 0. 

From (3.42) we observe, again using (3.25), that zj- _ x;' + vB, where xj' is the 
Multiply sequence satisfying 

(3.44) xi+,= {Nxj' + 6'} (j = 0,1, *..). 

The numbers x3' are equidistributed for almost all xo' , hence by (3.43) equidistrib- 
uted for almost all xo if k ? vNAT 5 0. By Weyl's criterion the translates zj1-Xj 
+ PO3 are equidistributed when the xj' are equidistributed. Therefore, 

M1 

(3.45) lim j- cos 2rz1j = [ cos2rzdz = 0 
M-- 11 j=1 

for almost all xo if the integer k t vNAT 5? 0. But k + vNT > 2 for all positive k 
and v. Therefore, by (3.41), 

F(r, k, v) = 0 unless k-VNT = 0 

F( r, vNT, v) = 2 Cos 27vr,. 

The last identity follows from zj = vB for all j if k = vNT . By Jagerman's theorem 
(1.11) and by (3.46) 

R T _ F(r, k v) 
R(T-) =_ 1 2k 

k=1 V=1 ir kv 
(3.47) 00 

_ cos 2vvBf 
;=i 2r2v2NT 

Using the well-known identity 

00Cos 27rvx 12 
E grQVS = 6 x + x2 (O _ x _ 1 

V 2v2 
X+ Ox1 

we obtain the required result (3.40). 
We should like also to compute the spectral density 

00 

= R(0) + 2 E R(T) cos 2xrco 
7=1 

(3.48) 
1 + N N - T _ i 2 - + + N` (- -{ 0~ +{ i'O} 

Cos27rw~. 
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If 0 = 0, i.e., if xa, = {N'xo}, this series may be summed to the value 

1 0 
/I\ 

OM ( -) + E N ) cos 27rrow 

1 +1 _e lN-le2rir ) 
- 

(3.49) -_- + Re(l 

1 1 Y-2 

12 1 - 2N-1 cos 27rw + N-2' 

Multiply sequences and Weyl sequences are generated by recurrence formulas 
Xn+1 = { p(x,7)) X where p(x) is a polynomial of first degree. In the next theorem we 
assert that there are no polynomials of higher degree which generate equidistributed 
sequences. 

THEOREM 10. Let p(x) be a polynomial with real coefficients. Suppose that for 
some xo the sequence x1 , x2, generated by 

(3.50) .n+l = {(p(rt)} (n = 0,1, *...) 

is equidistributed in 0 ? x < 1. Then either p(x) x + a, a irrational, or p(x)= 
Nx + 0, ?N = integer > 1. 

Proof. For any assertion S,, we have Pr(S S) = Pr(SS+1), since the number of 
numbers n = 1, * , M for which Sn is true differs by at most 1 from the corre- 
sponding number for Sn+1 . In particular, 

(3.51) Pr(x,, < y) = Pr(x.r+1 < y) 

= Pr({p(x.)} < y) 

or, by equidistribution, if 0 < y < 1, 

(3.52) y = m(xl{p(x)l < y, 0 <Kx < 1), 

i.e., y is the measure of the finite collection of intervals of values x such that { p (x) K < 
y, 0 < K < 1. There is at most a finite number of points zi such that p'(zi) = 0. 
Let y = b be any point satisfying 

(3.53) 0 < b < 1, b X {p(O)}, b X {p(1)}, b X {p(Zi)} for any zi . 

Let x = a, , a2, ... , ak be the finite collection of points in the open interval (0, 1) 
such that b = {p(aj)). There must be at least one such point a, , for otherwise 
there would be an interval of values surrounding b which were not achieved by 
p(x); then none of the values x1 , X *, ... could be in this interval, and the sequence 
x, could not be equidistributed. Let 

(3.54) Nj = [p(a>)], b = p(a3) - Nj (j = 1, * *, k). 

Since p'(aj) X 0, there are inverse functions t,(y) uniquely defined in a neighbor- 
hood y - b K < such that 

3(b) = aj, y = {p(tj(y)} = p('j(y)) -Nj, 
(3.55) 0 K 1 

q,'(Xi. X 0n n < t(q, < I s= - k. 
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For I y - b I < a differentiation of the identity (3.52) gives 

d 
1 = -m(x {p(x) Ky, 0 < x < 1) 

(3.56) dy 
= Aj d 

k 

0d~j(y) 
j=? dy. j=i1- dy 

where Oj = sgn t'(b) = sgn p'(a,) = :41. 
We now consider each function (j(y) in the whole complex y-plane. This function 

is analytic except for branch points yjv = p(zv) - Nj where z1 , z2, are the 

zeros of p'(z). For j = 1, , k there are at most k(d -1) distinct points yjv 

if d is the degree of p(z). Let the y-plane be cut by non-intersecting curves extend- 
ing from the points yjv to the point at infinity. In the cut plane every function 
tj(y) is a uniquely-defined analytic function of y satisfying 

(3.57) y = p(ij(y)) -Nj (a = I,** k). 

Analytic continuation of (3.56) gives 

?0d~j (y) - f 
0 

(3.58) 1 = 1= =1E 

in the whole cut plane. Let y tend to infinity in the cut plane. By (3.57) each point 
tj(y) tends to infinity because d = degree of p ? 1. If d > 1, then (3.58) gives a 
contradiction, since tj(y) -> o would imply p'(tj(y)) -* oo and 1 = 0 in the limit. 

Therefore d = 1, and p(x) = Ax + B, A $ 0. Then Oj = sgn tj'(b) = sgn A. 
Equation (3.58) now yields 1 = k/A, A = i the positive integer k. The case 
A -1 is impossible because X +' = I - x, + B} gives the two-valued sequence 

X2m tXOI, X2m+l = 1 xo + BI (m = 01, .). 

If A = 1 we must have B equal to an irrational number a; otherwise xn is periodic. 
If k = 2, 3, , the proof is completed by setting N = A = ?k, 0 = B. 

With regard to sequences generated by xn,+1 = {Nx,, + 0} where N = integer < 
-1, the argument in [71 proving that xn is equidistributed for almost all x0 was 
made only for N = integer > 1; hut the proof also holds for N = integer < -1. 

4. Polynomial Sequences. Weyl [1] proved that for any integer p > 0 the 
sequence 

(4.1 ) xrt, { ban' + cinP-' + c2nP'2 + ... + c (n = 0 1,* ... 

is equidistributed in C( if a is irrational. We shall study some sequential properties 
of these "polynomial" sequences. 

THEOREM 11. If the leading coefficient a is irrational, a polynomial sequence (4.1) 
of degree p is equidistributed by p's but is not equidistributed by (p + 1)'s. 

Remark. A sequence Xn equidistributed by r's is equidistributed by j's for all 
j < r. This follows directly from the definition (1.2) of equidistribution if we set 
Zi = Xr+i (i = 1, * , r), aj+1 a. = 0, bj+1 = l . = br = 1. 

Therefore, Theorem 1 1 implies that the polynomial sequence (4. 1) is equidistributed 
by k's if and only if k < p. 
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Proof. First we show that x7, is not equidistributed by (p + 1)'s. Let f(n) = 

an' + *-- + cp. Let A be the forward-difference operator: Af(n) = f(n + 1) - 

f(n). Then 

APf(n) =p!a 

or 

kof(n) + kif(n + 1) + *. + kjf(n + p) = p!a 

where k1 is the constant 

kp (-)p -, (P (v = O. 1, * ,p). 

For this choice of the integers k, we have, for all N, 
N-1 

= , exp 27ri (k(, xn, + ki x,,+1 + ***+ kp x.+P) 
N19 1=0 

N-1 

-=Zex2-k ?exp 2kri(ko f (n) + **+ kp f (n + p) )=exp 2ip! F) O. 
N n=2 

Therefore, by the Weyl criterion, the vectors 

Z = (X.l , X.+i, , * * X.+P) 

are not equidistribhited in Cp+l , i.e., the sequence xn is not equidistributed by 
(p + 1)'s. 

However, if ku o , kp-1 are any p integers not all zero, we have 
P_1 P-1 

(4.2) Z kj (n + v)= 1kp-iAf(n) 
PV=0 P=0 

where 

(4.3) k= V k + V + kv+ + + ( kp-. 

The integers k,' are not all zero; in fact, k' = k, if v = s is the largest integer < 
p - 1 such that k, 5 0. Let v = r be the smallest integer such that k,' # 0. Then 
the polynomial (4.2) is a polynomial of degree p - r ? 1 with irrational leading 
coefficient 

0 = p(p -1) (p -r + 1)axkrl 

Then the polynomial (4.2) has the form np-r + * * *, and by the equidistribution 
of polynomials (mod 1) with irrational leading coefficients 

1 N-1 

(4.4) N exp 2ri(nPr+ .. *O as N > oo 

or, since x = {f( v) I, 
N-1 

(4.5) Z exp 27ri(ko xn + k, xn+1 + . + kn+p-l Xn+p-l) -> 0. 
N _n= 
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Therefore, the vectors z = (xn **, x?n+p1) are equidistributed in ,C i.e., the 
sequence xn is equidistributed by p's. 

By using the identity (1.11), Jagerman [5] showed that the sequence xn = In2a} 
is white. Without using Jagerman's identity, one can derive in an elementary way 
the general result: 

THEOREM 12. If p ? 2 every sequence Xa, {anp + clnP' + * + cpt, a ir- 
rational, is white. 

Proof. Let r be any positive integer. For every integer ko1, ki not both zero, we 
have, as in the preceding proof, 

ko(anp + cin"-' + * * *) + ki(a(n + r)P + cl(n + r)p-' + **) = polynomial in 

n of degree > 1 with irrational leading coefficient. 

Therefore, the vectors (Xn , xn4-T) (n = 0, 1, ***) are e(uidistributed in C2. 
Therefore, 

R (Tr) lim E1(n - xn+T 

= X X - 1 1 dx dy = 0. 

We know from Theorem 11 that no choice of a will make the sequence Xn = { n2a 
equidistributed by threes. Can we nevertheless choose a so as to make this sequence 
equipartioned by threes? 

THEOREM 13. The sequence x, I{n2a}, a irrational, 0 < a < 1, is equipartitioned 
by threes if and only if a is one of the four numbers (3 i _V3)/12, (9 ?t v 3)/12. 

Proof. First we shall find values a which make 

(4.6) Pr(Xn > Xna1 > Xn+2) =6 

An acceptable value a must also make the five other orderings of Xn , X,+1 , X4+2 
occur with probability 1/6. In the unit cube C3 we define the characteristic function 
O(x, y, z) of the set x > y > z: 4 = 1 for points in the set, 4 = 0 for other points 
in C3. The relation (4.6) is equivalent to the existence of the limit 

N 1 

(4.7) lim - __(xn) Xn+1 ) Xn+2) 
N-boo N n= 

The function 4)(x, y, z) has a Fourier series: 

(4.8) +(x, y, z) - aj Cpqrexp 27ri(px + qy + rz). 
pq,r 

If c is defined by periodicity outside C3, this series converges to the piecewise con- 
stant function 4 except at the points of discontinuity. In particular, since the 
numbers x, = { v22a}, a irrational, are distinct positive numbers < 1, we have 

4b(Xn, Xn+1, Xn+2) = Cpqr exp 27ri(pXn + qxni + rXn+2) 
p,q,r 

(4.9) E7Z Cpqr exp 27ri(pn2 + q(n + 1)2 + r(n + 2)2)a. 
pq,r 
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Observing that pn2 + q(n + 1)2 + r(n + 2)2 is independent of n if and only if 
p, q, r are proportional to 1, -2, 1, we compute 

(4.10) lmN exp(pxn + qxi + rX+2) 
e4ira if = r, q = -2r 

N-->oo N n=l ~0 otherwise. 

If we can justify the interchange of limits 

iN lim - Cp,qlr exp 2iii(pxn + qxnfi + rxn+2) 
iv-O NV n=l p,q,r N 

= Z Cpqr lim - E exp 2iri(pxn + qxn+i + rxn+2) 
p,q,r N->ooN '=1 

we shall find, by (4.10), 
N oo 

(4.12) lim1 E (x xn+l , X+2) - E cr e 
NooKN n=l r=-oo 

where c, = Cr,-2rr. We compute the Fourier coefficient 

Cr= (x, y, z)e-2Tir(x-2y+z) dx dy dz 

(4.13) Cr = fff e2rir(x-2y+z) dz dy dx 

Cr= 4r2r2 (r # 0), co = 

Then formula (4.12) gives 

1 N 1 ~~~~~+ ~cos 47rra 
(4.14) -l N y Xn+l , X +2) = 6 +-1 2 2r2 

The series on the right has the sum 

S(a) a + 2a2 (0 a _) 
S(a) S(a -) (2 < a 1). 

We require those values of a which make S(a) = 1/6. Solving the quadratic equa- 
tion, we find 

(4.16) a = (3 i V3)/12 (0 < a < a (9 3)/12 (< a <1). 

If the interchange of limits (4.11) is justified, we have shown that Pr(x. > xn+ > 
Xn+2) = 1/6 if and only if a is one of the values (4.16). 

Now we shall justify the interchange of limits. The Fourier series (4.8) has 
partial sums 

(4.17) Srn(x, y, z) = sm,1,m2,m, (X y Z) Z Z Z Ce22i(pX+oy+rz) 
IrlI<ml IqlJm2 Irlfm3 

From these sums we form the Fejer means 

I ml m2 m3 

(4.18) cr.(xy, z) 1 ) 
= E Skl,k2,k3(XY , Z). 

(ml + I )(m2 + I) (m3 + 1) k1=O k2=0 k3=f 



DETERMINISTIC SIMULATION OF RANDOMI PROCESSES 45 

Since 0 < 4) < 1, we have 0 _ _m _ 1. If F is anly closed subset of points of con- 

tinuity in C3 , then m -q- 4 uniformly in F as L-> oo (c.f., A. Zygmund [8]). Let 

W(p, q, r) be the limit computed in (4.10). Since each partial sum is a finite sum, 
we havre 

IN 
lim - .Sm(xm , xn+l, Xn+2) 
N-oo N n=l 

(4.19) Z EI Z CfpqrW(p,q,r) + E 2 
-PIPI m lql <m2 lrI<m3 6 r=1 27rr2 

where t is the largest integer for which t ? ml, 2t ?< M2, t ? m3. We note that 

t = t(m) -> oo as jml - oo. Let the limit (4.19) be called s(zm). As Ln -> oc, s(mj) 

tends to the limit 

(4.20) s = lim S(1n) = 
I 

? cos 47rra 
Il~-oo 6 r=1 27rr 

Replacing Sm by am in (4.19), we find 

1N 
(4.21) lim - E o(xn, x,, +, x?n+2) = o(mw) 

N-> N n=_ 

where o(m) is the (C, 1) mean value of the numbers s(k) for k1 _ in, m 2 < m2, 

k3 < M3. By the regularity of (C, 1) summability, we have 

(4.22) (m) s->S= 
+ E Z 

r 
as I m - cc. 

6 r= 2irr2 

Let E > 0 be given. Define F to be the closed set of points (x, y, z) satisfying all 

the inequalities 

(4.23) )E 
X - YJ >- E) ly - ZI > rz. 

Since 4 is continuous in F, there is a number mo = mo( E) so large that 

(4.24) l4 (x, y, z) - m(x, y, z) I < E in F if Imj > mo . 

Let R = C3 - F. Let Pn = (x,, x+1, xn +2). We have 
N N N N 

E Ow(nP) - E 0m(Pn) = E (4)(Pn) - n(Pn)) + E (4) (Pn) 0_m(Pn)) 

(4.25) Pne F PneR 

= El + Z2. 

By (4.24) we have 

(4.26) <E1 N <NE if twi > mo(E). 

Since 4 and om both lie between 0 and 1, we have IE2 I - VN = the number of 

points P1, -*. , PN which lie in R. By the definition (4.23) every point Pn in R 

satisfies at least one of the inequalities 

( 2 Xn < 7 E < Xn < 1 0 _ Xn7+ < )- < Xn+1 < 

(4.27) 
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But the sequence Xk { k2a} is equidistributed in C1, and the sequence (Xk , Xk+1) is 

equidistributed in C2 . Therefore, 

lisupI ? </X dx + dx + dy + dy 

(4.28) 

+ Idz + f dz + ff dx dy + ff dy dz < 1Oe. 

Letting s be the limit (4.22), we find from (4.25) 

(429 N i N 1 1 429 N E ?(P) - KEZ 0m(Pn) - S + |1 + 112 

Let N -> oo. If jmj > mO(E) we find 

(4.30) lim sup (P)-s< a(m) - s + e + 10E. 
N->oo Nn~l 

But by (4.22) 1 (m) - s < eif I I I is sufficiently large. Therefore, the limit supe- 
rior (4.30) is < 12E for arbitrarily small e > 0. Therefore, 

iN 
0 

(4.31) lim I L-0 (FI) = = + :Cos 4rra 
N->oo N n=1 6 r=1 2irr2 

This justifies the required formula (4.12). The essential point in the proof was the 
inequality (4.28), which showed that not too many of the points (X,, xn+1, xn+2) 
fell near the discontinuities of 0. 

To discuss each of the other five orderings we proceed exactly as before. For 
example, to find those values of a which make Pr(xn > xn+2 > xn+1) = 1/6, we 
define the characteristic function 4(x, y, z) of the set x > z > y in the unit cube C3 . 
This function has a Fourier series with coefficients Cpqr. Justifying the necessary 
interchange of limits, we find for this new function s: 

I 
N 

Pr (Xn > Xn+2 > x.+l) = urn -E X Xn, 1 n, xn+2) 
N-boo N n=1 

(4.32) 

- ZS Cr,-2rre = S(a) 
r=-oo 

where in this case 
1 x z 

Cr = Cr,-2rr = 111z e-2wir(x-2y+z) dx dz dy 

(4.33) 

C.= 1/6, Cr 8r2r2 (r ). 

This gives the sum 

S(a) = 8 + a (0 <2) 
(4.34) 

O) 

((a) = S(a - ) ( 2< a < 1). 

This function S(a) is different from the function S(a) computed in (4.15) for the 
first ordering. Nevertheless, the new equation S(a) = 1/6 has the same roots as 
the old equation. These four roots in the interval 0 < a < 1 are, as before, 
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(3 ? V/)/12, (9 ? V\/)/12; and Pr(xr, > x+2 > xn+) = 1/6 if and only if a 
has one of these values. 

For the remaining four cases these are the results: To compute the three prob- 
abilities Pr(xn+l > Xn > xn+2), Pr(xn+l > xn+2 > x,,), Pr(x.+2 > X. > X.+1) we 
compute, respectively, the Fourier coefficients cr = Cr,-2rr for the characteristic 
functions 0 of the sets y > x > z, y > z > x, z > x > y. For each of these cases 
computation gives the coefficients cr recorded in (4.33) for the second case. For the 
last case, to compute the probability Pr(xn+2 > x,+1 > x,) we find for the char- 
acteristic function 4 of the set z > y > x the same coefficients cr which were com- 
puted in (4.13) for the first case. These unexpected coincidences show that the 
same four values of a make all of the six probabilities equal to 1/6. This completes 
the proof of the theorem. 

5. Completely Equidistributed Sequences. J. F. Koksma [3] proved in 1934 
that for almost all 0 > 1 the sequence x' = { Qn is equidistributed. We shall show 
that these sequences, unlike the other equidistributed sequences which we have 
investigated, are completely equidistributed. We shall use the following preliminary 
result: 

THEOREM: (Koksma [3], Satz 3.) Let a and ,3 be fixed real numbers with a < ,B. 
For each natural number n let f(n, 0) be a real, continuously differentiable function of 
0 in ao< 0 <6 ; and let 

(5.1) 
a f (m, 0) - -f(n, 0) 

denote for each pair of unequal natural numbers m and n a monotone function of 0 in 
a < 0 _ A, which everywhere in this interval has absolute value > K, where K is positive 
and independent of 0, m, and n. Then f(n, 0) (n = 1, 2, **) is equidistributed modulo 
1 for almost all 0 in a < 0 ? f3. 

From this theorem we derive the following: 
THEOREM 14. Let p( 0) be any twice continuously differentiable function with at most 

a finite number of zeros in any finite subinterval of 0 > 1. For n = 1, 2, l let 
M(n) > 1; and for each pair of positive integers N :X n let 

(5.2) I M(N) - M(n)I ?! L 

where L is a positive number independent of N and n. Then the function p(6)m M(n) 

(n = 1, 2, **) is for almost all 0 > 1 equidistributed modulo 1. 
For p(6) = 1 this theorem was proved by Koksma [3], Satz 2. 
Proof. Let 1 < a < A, where the closed interval a ? 0 ? d contains no zero of 

p(6). The open interval between two consecutive zeros of p(6) can be covered by a 
denumerable collection of closed intervals [a, f]. Therefore, it will suffice to show 
that p(6)6M(n) is equidistributed modulo 1 for almost all 0 in each interval [a, 3]. 
Let g(6) = p(6)6M (n). Let 

(5.3) {p(N, n, 0) = g(N 0)-- g(n, 0). 

We shall show that there is an integer s > 0 such that, if N > n > s, then 4p is a 
monotone function of 0 in [a, /] with absolute value > K, where K is a positive 
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number independent of N, n, and 0. Then, by Koksma's theorem, the sequence 
f(n, 0) = g(n + s, 0) (n = 1, 2, ..) will have been shown to be equidistrib- 
uted modulo 1. But this will imply that the original sequence g(n, 0) (n = 1, 2 .) 
is equidistributed modulo 1, since the first s members of a sequence cannot affect 
the property of equidistribution. 

We show first that M(n) -> o as n - oo. Given any B > 1 we let v _ oo denote 
the number of integers n such that M(n) ? B. Because of the inequality (5.2), we 
have (v -1 )L < B - 1. Therefore, v is finite. If nB is the greatest integer n such 
that M(n) < B ,then M(n) > B if n > nB . Therefore, M(n) o- as n oo. 

Let A and a denote, respectively, the larger and the smaller of the values M(N) 
and M(n). Then 

0(N, n, 0) 0 6 (0) (0) 

| p(0) (AOA-1- ala-1) + p'(0) (OA _ 6a) 

For a ? 0 ?3 there are numbers e > 0 and D > 0 such that 

(5.5) Ip( )p>-, p'(0)j I D, P "(0)j < D. 

Then 

|14(N, n, 0) I > e (A6A - ala) - D(OA Oa) 

(5.6) / 

>(j D) 6a(6A - 1). 

But, by the assumption (5.2), A - a > L. Therefore, for a < 0 < 

(5.7) 1jt(N,n,0) I > K = Ea - D) (aL 1) 

The number K is positive if a > Dfl/E. Since M(x) -> o as x -- o, there is a 
number s so large that M(x) > Dfl/E if x > s. Therefore, 

(5.8) 1 iJ(N, n, 0) I?K > O if N > n > s. 

It remains only to show that 4,1 is monotone in 0 for N > n > sufficiently large s. 
We compute 

&b(N, n, 0) = p() (A (A - 1)6A-2 
- 

a(a - 1)0 a) 
06 

+ 2p'(0) (A6A-1 - a6al1) + p (0) (OA _ 6a) I 

> -E (A(A -1)6A -a(a - I)6a) -2 (A6A - aaa) - D(OA _ 6a) 
62 6 

?9-2 a((A - 1)6A - (a - I)6Ja) 2D6-1(A6OA - aa) - D(OA -_ a) 

= (e 2a - 2D-1)(AOA - ala)- (D + E0-2a)(6A _ -a). 

If a > 2DO/3,E, the last expression is 

(is2a2 _ (2D 1 + 0- 2)a - D) (OA _ 6a). 
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The last expression is positive for all 0 in [a, d] if 

0- a _ (2Da& + 2)a - D > 0 

which is true for all sufficiently large a. Therefore, if s is sufficiently large, 

(5.9) a !(Nn,60)7O if N>n>s. 

This gives the required monotonicity; inequalities (5.8) and (5.9) complete the 
proof of the theorem. 

THEOREM 15. For any two functions A(0), B(0) the sequence x, - {A(0)6O' + 
B(0)} (n = 1, 2, *..) is completely equidistributed for almost all 0 > 1 if A(0) has 
two continuous derivatives for 0 > 1 and if A( 0) has at most a finite number of zeros 
in any finite subinterval of 0 > 1. 

Proof. For every integer r > 0 we must show that for almost all 0 > I the se- 
quence of vectors zn = (Xn , Xn+1 X xn+r-1) (n = 1, 2, ... ) is equidistributed 
in the r-dimensional unit cube CT. By the Weyl criterion this is equivalent to 
showing that 

1N r-1 

(5.10) E Zexp 2iri a kl(A(6)6 +' + B(0)) 0 as N-> 0X 
n=1 p=O 

for almost all 0 > 1 if ko, ... , kr-1 are any integers not all zero. Let q(6) = ko + 
k10 + + kri6-1 Formula (5.10) requires that 

N 

(5.11) - E exp 2riq(0)A (0) On O as N-> oo. 
Nn=1 

But the function p(6) = q(6)A (0) satisfies the conditions of the preceding theorem, 
since the polynomial q has at least one non-zero coefficient. Therefore, for almost 
all 0 > 1 the sequence lq(O)A(0)0'1 is equidistributed in C1. Then (5.11) follows 
from the one-dimensional form of the Weyl criterion applied to the sequence 
q( 6)A (0) an. This completes the proof. 

COROLLARY. The sequence {f n} (n = 1, 2, * ) is completely equidistributed for 
almost all 0 > 1. 

Proof. In the last theorem this is the case A(0) = 1, B(6) = 0. 
The algebraic character of the number 0 may influence the sequential properties 

of {I n}. Although it is not known whether {n6} may be equidistributed if 0 is ra- 
tional, we have the result: 

THEOREM 16. If {IO} is equidistributed by r's, then 0 cannot be an algebraic number 
of degree < r. In particular, if { fn} is completely equidistributed, then 0 is transcen- 
dental. 

Proof. By (5.11), if { '} is equidistributed by r's, then 

1-Or 
-E exp 27ri(ko + k16 + + kr-i6T1)6'_> 0 as N-> 0o 

if ko, , kjri are distinct integers not all zero. Therefore, q(O6) 5 0 for any poly- 
nomial q of degree < r with integer coefficients not all zero. 



50 JOEL N. FRANKLIN 

THEOREM 17. Every completely equidistributed sequence xn is white. 
Proof. For every r = 1, 2, the pairs (xn, xn r) are equidistributed in C2, 

since for 0 < ao < bo < 1, 0 < a, < b _ 1 

Pr(ao x< n < bo ,a < a xn+r < b,) 

=Pr(aoIXn < bo 0? < ++1 < 1, *Xn+,l < 1, aT, _Xn+,< bT) 

= (bo - ao)(b, - a,) 

because the sequence x, is equidistributed by ( r + 1)'s. Therefore, as in the proof 
of Theorem 12, Xn is white. 

6. White Sequences. We have called an equidistributed sequence xn white if 
it is uncorrelated with any of its translates xn+, r 5 0: 

(6.1) R(T) = lim X (n )(n+,r 2- T=1X 2, ) 

We have shown in the proof of Theorem 12 that every sequence xn is white for which 
the pairs (Xn 7 xn+?) are equidistributed in C2 for every r = 1, 2, * . . The purpose 
of this section is to emphasize that whiteness is a weak criterion of randomness. We 
shall show that an equidistributed white sequence need not be equipartitioned by 
twos. 

THEOREM 18. There is an equidistributed white sequence Xn for which Pr(xn > Xn?l) 

> 2 
Proof. Let yj, y2, *** be any truly random sequence of independent samples 

from the uniform distribution on 0 ? y < 1. We shall form the sequence xi , x2, ... 

from the separate pairs yj1, y2 ; y3 y Y4; ... of the y-sequence. Let G be a fixed region 
in the unit square 0 < u < 1, 0 ? v < 1; let G* be the complementary set. We de- 
fine 

6X2n-1 
y2n-1 , X2n = y2n if (y2n-1, y 2) E G 

X2n-1 y2n , X2n = y2n-1 if (y2n-1 , y2n) E G*. 

For any G this transformation leaves the sequence x, equidistributed, since for 
every N= 1, 2, 

(6.3) a E 1b-_ 1 ?1. 
a < xn<b a <_ Yn<b 

n <N n<N 

For any G we shall compute the autocorrelation function R( r) of the x-sequence 
and compute Pr(xn > x,+?). We shall then choose G to make R(r) = 0 for r # 0 

but make Pr(xn > Xn+1) > 2- 

Let g be the area of G; we assume 0 < g < 1. Let a be the area of the intersection 
of G with the triangle 0 < v < u < 1, and let be the area of the intersection of 
G with the triangle 0 < u < v < 1; thus a + ,3-g. Let'y and a be the moments 

(6.4) = jf (u 9)dudi, - !ff(v-9)dudv. 
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Let numbers g* a*, a *, l* be defined analogously with respect to G*. Thus 
a*+ * =* ca + ax* = 1/2,3 + = 1/2, g + g*= 1, and 

g (6 ) + g* (8*:) (?) 

Let P7 = (Y2n-1 , Y2.)(n = 1, 2, ). Finally, let a =Xn - 2, bn yn - 12 

First we compute R (1) = E anan+1 . If n is odd, a, and an+1 come from the same 
point Pn . Therefore, 

( 6.5 ) E a2n-1a2n = E b2n-1b2n = 0 

since the numbers bn = - 1/2 are uncorrelated with mean zero. If n is even, the 
numbers an) a,,+l come from two consecutive points P. Thus 

(a2n , a2n+l) = (b2n , b2n+1) if Pn E GI Pn+1 E G 

= (b2n , b2n+2) if Pn E GI Pn+1 E G* 
(6.6) ( (b2n-1, b2n+1) if P, E G* P+l E CG 

= (b2n-1 I b2n+2) if Pn E G*, Pn+1 C G*. 

Therefore, as we shall explain directly, 

(6.7) Ea2na2n+l = g2by + gg* 55 + g*gq*qy + g*2.*a* 

The first term g25_y is simply the probability g2 that both points Pn I Pn+1 lie in G, 
multiplied by the mean values 8, y of b2n = v - in G and of b2n~1 u U- in G; 
the other three terms arise similarly. Using the identities g*7* =ag, = g8 
we find from (6.7) 

(6.8) Ea2na2n+l _2(7 
- 

)2. 

Since 

R(1) = Eaan +1 = 2(Ea2n-,a2nl + Ea2,1a2?,+l) 

we have from (6.5) and (6.8) 

(6.9) R(1) = - 2(7 6 )2 

Next we compute R(T) for T = 2s = 2, 4, 6, W . We have 

(6.10) R(2s) = E(a?,af+2S) = 'E(a2n-ia2n_1+2s + a2,,a2?+2,). 

But 

a2n-la2n-1+2s + a2?1a2n+2s 

= b2,1b2-1?+2s + b2nb2?+2s if Pn E G, Pn+s E G 
= b2nllb2??+2s + b2nb2n-1+2s if Pit E G, P7+5 E G* 

(6.11) = b2nb2n?1+2s + b2n1b2s?28 if P, E G*, Pn+s E G 

= b2nb2n?+2s + b2?lj-b2nl?+2s if P, E G*, P,,+1 E G*. 

Therefore, E(a2n-ja2-1~+2s + a2na2n+2s) equals 

2(2 + 52) * g 6* + *) -+ g*(* 7 + 6*) + g*2(6*2 + *2) = 2a7 6)2. 
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Therefore, 

(6.12) R(2s) = g2(y - 8)2 (s = 1, 2 ..). 

The cases r = 2s + 1 (s = 1, 2, * * ) are slightly more complicated. We have 

a2n-la2n+2s = b2n-lb2n+2s if Pn E G, Pn+s E G 

= b2n-1b2 +2s-1 if Pn E G, Pn+s E G* 

= b2nb2n+2s if Pn E G*, Pn+s E G 

= b2nb2n+2s-1 if Pn E G*, Pn+s E G*. 

But a term a2na2n+2s+l will involve a third point, Pn+s+1 

a2na2n+2s+l = b2nb2n+2s+l if Pn E G, Pn+s+1 E G 

= b2nb2n+2s+2 if Pn E G, Pn+s+1 E G* 

= b2n-lb2n+2s+l if Pn E G*, Pn+s+1 E G 

= b2n-lb2n+2s+2 if Pn E G*, Pn+8+l E G*. 

Therefore, for s = 1, 2, *- 

2R(2s + 1) = Ea2n-ia2n+2s + Ea2na2n+2s+i = g28Y + gg T*Y + g *g8 + g *28 *y 

(6.13) + g28-' + gg* 88* + g9q-yly ? g*2*y* = 2g2Q(,y8 - 2 - 82 + &y 

R(2s + 1) = _ 92(y - 8)2 (s = 1 2, ..). 

Having computed R(Tr) for all -r 5 0, we shall compute Pr(x, > xn+l). If n is 
odd, the numbers yn, Yn+j are the coordinates u, v of the same point PF, where 
n = 2j - 1. But 

(X2j-1, x2i) = (Y2j-1 , y2j) if P, E G 

= (Y2j, y2j-1) if Pj E G*. 

Therefore, X2j-1 > x2j when (u, v) = Pj E G and u > v, or Pj E G* and v > u. 
By the definitions of the areas a, (3, a * 3* 

(6.14) Pr(x2j1l > x2j) = a + a= ? + 2- 

When n = 2j is even, the numbers X2i , X2i+1 come from different points PF , Pj+j. 
We have 

(6.15) Pr(X2j > x2j+1) = g2A + gg*B + g*gC + g*2D 

where, if Pj = (ui , vj) = (Y21-1 , Y2j), 

A = Pr(vj > uj+1 Pi E G, Pj+1 E G) 

B = Pr(vj> vj+l Pi G, Pj+1 E G*) 

C = Pr(uj > u,+i P1 E G*, Pj+1 E G) 

D = Pr(uj > v,+? Pi E G*, Pj+1 E G*). 
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We must now define four probability densities O(u), VI(v), 0*(u), 41*(v). We 
define 

,O(u) du = Pr(u ? u' _ u + du I (u', v') E G) 
(6.17) i/i(v) dv = Pr(v < v' v + dv (u, v) E G) 

or, equivalently, 

1(u) = f q(u') du' = du' dv' 

(6.18)= 

4(v) = , 1(v') dv' = 1(') du' dv'. 

,v' ?v 

The probability densities 0*(u), 4/*(v) and their integrals -*, 4* are defined analo- 
gously for the region G*. Thus 

(6.19) go(u) + g*4O*(u) = 1, gk(v) + g*,6*(v) = 1. 

From (6.16) we now compute 

A = 4i,(vj) (uju?) duj+1 dvj 

(6.20) 0 

A = f ,(v)(v) dv. 

Similarly we compute 

B = 44(v)!*(v) dv 

(6.21) C = f +*(u)t(u) du 

D = *+(u)**(u) du. 

From (6.15) we now find Pr(x2j > x2j+1) equal to 

1 

(6.22) L Fg-f(t>1(t) + gg*f* + g*g(P*f + g*2 **] d 

From (6.19) we see that the integrand equals 

92/4 + g,6(t - g) + g(1 - g) + (1 - go)(t - gJ) 

-2 d (44 - I 
(* 2 

+ q2)) + g 
d (t4- t) + t +2gt( - q). 
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Integration gives 

Pr (X2j > X21+l) jl (t + 2gt(/I - 4))) dt 

1 
(6.23) = - + 2gE(v - u (u, v) E G) 

2 

Pr (X2j > X2j+l) = - + 2g(6 -y) 2 

From (6.14) and (6.23) we conclude 

(6.24) Pr(xe > x.+1) = 24(1 + a -) ? g( - 4) 

Now we are ready to define G. We have shown for s = 1, 2, * 

R(1) = - g2(_ _ )2 R(2s) = g2(_ _ 
8)2 

R(2s + 1) - _ - _)2 

Therefore, it will suffice to pick G to be any region which has its centroid 
(y + 2, 8 + 2) on the line u = v, but which has more area a to the right of u = v 
than it has area ,3 to the left of u = v. This we may do, for example, by letting G 
consist of two small circles K and k, where K has area 2E > 0 and lies to the right 
of u = v, and where k has area e and lies to the left of u = v. Let K have center 0 
and k have center o. We require that the line segment connecting 0 to o pass through 
the center of the square (2, 2), and that the distance from the center of the square 
to o be twice the distance to 0. Then -y = 5, a = 2E, i = 

(6.26) Pr(xn > xn+1) = -1(1 + e), R(7r) 0 (r = 1, 2, * .). 

For example, if 0 < e < ir/128, we may let K and k be the circles 

(6.27) ( ( V <) + (v 3) < 

This completes the proof of the theorem. 

7. Sequential Equidistribution in Higher Dimensions. We have so far con- 
sidered various sequential properties of sequences x1, x2, * equidistributed in 
the one-dimensional line segment C1. But for many applications we must simulate 
random sequences in higher-dimensional cubes C, ; typically r = 2 or 3. For these 
applications we require sequences of r-dimensional vectors 

(7.1) y = (y(f, Y2 , , Yr ) (n = 1, 2, ... 

which are equidistributed in Cr . One can discuss various extensions of the notion of 
equipartition. It might also be useful to discuss the autocorrelation function 

(7.2) R() =lim- E E ((n) - (y(n+r) =0 1 ...) 
N-oo N n=l p=1 2 2 

to define the related spectral density 4(w), to extend Jagerman's results to higher 
dimensions, and to discuss higher-dimensional white sequences. 

However, in this paper we shall consider extensions only of the notions of 
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equidistribution by k's and of complete equidistribution. For any k = 1, 2, we 
shall say that the sequence of r-dimensional vectors y is equidistributed by k's if 
the sequence of k *r dimensional vectors 

(n)= (y(n) . . . (n+k1) 

(7.3) (yl(n) . .Y(n) y1(n+l) . . .G(n+l) (n+k-1) (n+k-1) 

is equidistributed in the k r dimensional unit cube Ckr. The sequence y(n) is com- 
pletely equidistributed if it is equidistributed by k's for all k. 

If xl, x2 , * * * is a truly random sequence of independent samples from the uniform 
distribution on C1, then 

(7.4) y 
= 

(Xnr Xnr+l X * * Xcnr+r1) (n = 1, 2, ..) 

provides a truly random sequence of independent samples from the uniform distri- 
bution on Cr.. 

For any one-dimensional sequence Xn , random or deterministic, we define the 
r-dimensional "derived sequence" z(n) by (7.4). We shall investigate the derived 
sequences of certain one-dimensional equidistributed sequences. 

We first ask whether a sequence Xn equidistributed by r's for some r > 1 has an 
equidistributed r-dimensional derived sequence. This is not true in general. 

THEOREM 19. There is a sequence x1 X X2 X X3 X* equidistributed by 2's in C1 for 
which the 2-dimensional derived sequence 

(7.5) 
( = 

(X2X) (2) = (X4, X5), = (X6 ,X7), 

is not equidistributed in C2 - 
Proof. We shall construct a sequence Xn for which the pairs (Xn, xn+i) are equi- 

distributed in C2 but for which the alternate pairs (x2j, x2j+1) are not equidistrib- 
uted. Let gin be any sequence equidistributed by twos, e.g., gn = {n2a2}, a irrational. 
If we let I and II represent, respectively, the left and the right halves of the interval 
0 < x < 1, we create from the g-sequence a sequence Xn which may be represented 
schematically as follows: 

(7.6) n= I, I, II, II, I, I, *I I 

To be precise, we define 

Xl = 1gl X X2 = 2g2 X X3 = 2+ 2g3 , X4 = 2+ 19g4 
(7.7) 1 1 1 X5 = 2g5 X X6 = 12g6 X X7 = 2 + g7 , X8 = 2 + g8 , etc. 

The successive pairs (Xn, xn+1) have the schematic representation 

(7.8) (Xn ,X .n+1) = (I, I), (I, II), (II, II), (II, I), * - C . 

Thus the pairs (Xn , xn+1) are equidistributed in the four sub-squares of C2 

(IJ) = (O _ u<2 V<1) (II, II) = (- < u < 1, < v <1) 

(I )=(O _ u < -, 0 < v < -) (I )< (21 < U < I) 0 <V <2) 

Therefore, (xl , xn+l) is equidistributed in C2. But the successive pairs (X2j , X2j+1) 

have the schematic representation 
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Since the sub-squares (I, I) and (II, II) remain empty, the sequence (x2j, X2j+1) 
cannot be equidistributed in C2 . This completes the proof. 

THEOREM 20. For some Xo let Xn+1 = {Nx, + ? } (n = O 1, ... ), N = in- 
teger ? 2. For any such sequence the r-dimensional derived sequence (7.4) cannot be 
equidistributed in Cr for any r > 1. 

Proof. Suppose that for some r > 1 the derived sequence yf(n) defined by (7.4) 
were equidistributed. From this assumption we shall deduce that the original 
sequence xO, is equidistributed by r's. Let h be the r-dimensional vector 
h = (6, 6, * *, 0). Since N is an integer #0, it is an immediate consequence of the 
Weyl criterion for equidistribution in Cr that the sequence 

y(n l) = Ny (n) + h (n = 1, 2, ...* 

is also equidistributed modulo 1 in Cr. Consequently, 
(n,2) n ) 

y 
' Ny '+ h (n = 1, 2, ... 

is equidistributed modulo 1 in Cr , et cetera; each of the r sequences y, y() l) 
(n,r-1) mdl n .X+ y is equidistributed module I in Cr. But, since NXk + 6 Xk+1 modulo 1, 

y 
= (Xnr , Xr+1 Xnr+r-1) 

y(n) 
= (Xnr+ Xr+2, , Xnr+r) (mod 1) 

y(n ,r-1) (Xnr+r-1 Xnr+r X Xnr+2r-2) (mod 1). 

To show that the original sequence Xn is equidistributed by r's we must show that 
the sequence of vectors z(k) = (Xk Xk+1 X . Xk+r1) (k = 1, 2, ) is equidistrib- 
uted in Cr. But 

(r) z(r +1) _ yl)y) (1,r-1) (2) (2,1) t(2,r-1) 

In general, for k > r, if y(flO) = y 

z() (n,p) P *= 
- - 1; n = 1, 2, ; k = nr + p). 

Therefore, z (k) is equidistributed in Cr, and the Multiply sequence x,, is equidis- 
tributed by r's. But this is a contradiction to Theorem 4, which implies that no 
Multiply sequence is equidistributed by r's for any r > 1. 

THEOREM 21. Let a be irrational. Let 

(7.10) x, {xan ' + cin' + c2np-2 + + cp} (n = 1, 2, ). 

The r-dimensional derived sequence y(n) is equidistributed by k's if and only if kr < p. 
Proof. For r = 1 this theorem reduces to Theorem 11 in Section 4. The sequence 

of y(f) is equidistributed by k's when the sequence 

(7.11) W = (Xnr , Xnr+l, *, Xnr+kr1) (n = 1, 2, ) 

is equidistributed in Ckr* We now proceed as in the proof of Theorem 11. Let 
f (n) = anp + * * * + cp . Let Af(m) = f(m + 1 ) f (m). The Weyl criterion states 
that w(n) is equidistributed when 

N kr-1 

lim N-1 E exp 27ri E hjf(nr + j) = 0 
N-boo n=l j=O 
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for any integers ho . , hkr-1 not all zero, or, equivalently, when 
N kr-1 

(7.12) lim N-1 , exp 2iri E hjAjf (nr) = 0 
N-oo n=l j=O 

for any integers ho', *, hkcr-1 not all zero. 
If kr > p, we may choose hp' = 1, hj' = 0 (j X p). Then for every N- 

1,2, 
N kr-1 N 

N-1 exp 27riE hj'&Ajf(nr) = N-1Z, exp 2w7riAf(nr) 
n=1 j=O n=l 

N 

= N'Z, exp 27ri p! r'a = exp 27ri p! r'a # 0. 
n-1 

Therefore, W() is-not equidistributed if kr > p. But if kr < p, and if hj' 0 for 
<s but h,' X 0, then E h,'j (nr) is a polynomial in n of degree p -s > 1 

with leading coefficient 

0 = p(p -1 ** (p -s + 1)rpaeh,,. 

Since i is irrational, we have the required zero limit (7.12). This completes the 
proof. 

THEOREM 22. For almost all 0 > 1, for any r > 0, the r-dimensional sequence y(f) 

derived from Xn = { 6'} is completely equidistributed. 
Proof. We must show that for almost all 0 > 1 the sequence 

(n) nr nr-+ . nr+kr-1 
W (O 7 0 1 , 

i) (mod 1) 

is equidistributed in Ckr . The Weyl criterion requires 
N kr-1 

(7.13) lim N-1 E exp 2-ri 1I hjOnr+j 0 O 
N->oo n=i j=O 

for any integers ho , , hkr-i not all zero, i.e., 
N 

(7.14) lim Ni' E exp 2jrip(0)0nr = 0 
N-oo nz=1 

where p(6) = Z hj Oj a polynomial which is not identically zero. But by Theo- 
rem 14, if we set M(n) -nr and L = r, the sequence p(69)6onr (n = 1, 2, ...) 

is equidistributed modulo 1 for almost all 0 > 1. The relation (7.14), therefore, 
follows from the Weyl criterion applied to the one-dimensional sequence p( 6) or. 
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